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Abstract

This paper establishes bounds on the predictive performance of empirical risk
minimization for principal component regression. Our analysis is nonparametric,
in the sense that the relation between the prediction target and the predictors is
not specified. In particular, we do not rely on the assumption that the prediction
target is generated by a factor model. In our analysis we consider the cases in which
the largest eigenvalues of the covariance matrix of the predictors grow linearly in
the number of predictors (strong signal regime) or sublinearly (weak signal regime).
The main result of this paper shows that empirical risk minimization for principal
component regression is consistent for prediction and, under appropriate conditions,
it achieves near-optimal performance in both the strong and weak signal regimes.
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1 Introduction

Principal component regression (PCR) is a regression methodology with a long and well

established tradition that can be traced back to at least Hotelling (1957) and Kendall

(1957). In a nutshell, PCR consists in forecasting a prediction target of interest on the

basis of the principal components extracted from a potentially large set of predictors. PCR

is a popular tool for forecasting in macroeconomics where it is documented to perform

favourably relative to a number of competing approaches (Stock and Watson, 2012).

In this paper we study the properties of PCR from a learning theory perspective.

Our main contribution consists in establishing nonasymptotic prediction performance

guarantees for PCR. Our main result may be interpreted as a nonasymptotic analogue

of classic asymptotic results on the prediction properties of PCR obtained in Stock and

Watson (2002). Our analysis shows that, under appropriate conditions, PCR achieves

near-optimal performance. An important feature of our analysis is that we treat PCR

as a regularization procedure and we do not assume that the data are generated by a

factor model. In particular, as is customary in learning theory, the relation between the

prediction target and the predictors is not specified. That being said, as the factor model

feinschmecker will recognize, our framework relies on assumptions and proof strategies

analogous to the ones used in the factor model literature. In particular we build upon

classic contributions such as Bai and Ng (2002), Bai (2003), Fan, Liao, and Mincheva

(2011, 2013) and Onatski (2012) among others.

PCR may be described as a two-step procedure. Let D = {(Yt,X
′
t)

′}Tt=1 be a sta-

tionary sequence of zero-mean random vectors taking values in Y × X ⊂ R × Rp. The

goal is to forecast the prediction target Yt using the p-dimensional vector of predictors

Xt = (X1 t, . . . , Xp t)
′. The first step of PCR consists in computing the T × K princi-

pal components matrix P = ( P1, . . . , PT )
′ associated with the T × p predictor matrix

X = (X1, . . . ,XT )
′, for some appropriate choice of K. This may be defined as the
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solution of the constrained least squares problem

( B, P ) = arg min
B∈Rp×K

P∈RT×K

X − PB′2F s.t.
1

T
P ′P = IK ,

1

p
B′B is diagonal,

where  · F denotes the Frobenius norm. As is well known, P is given by
√
T times the

first K eigenvectors of the matrix XX ′. It is useful to remark here that the principal

components allow us to express the vector of predictors Xt as a linear combination of the

matrix of coefficients B with the K principal components Pt plus a residual vector u,

that is

Xt = B Pt + ut , (1)

where ut = Xt − B Pt. The second step of PCR consists in computing the K × 1 least

squares coefficients vector ϑ̂ associated with the regression of the T × 1 target variable

vector Y = (Y1, . . . , YT )
′ on the principal components matrix P . This is the solution to

the least squares problem

ϑ̂ = arg min
ϑ∈RK

Y − Pϑ22 ,

where  · 2 denotes the Euclidean norm. It is straightforward to check that ϑ̂ = P ′Y /T .

PCR may be interpreted as regularized empirical risk minimization.1 Consider the

class of prediction rules indexed by θ ∈ Rp given by fθ t = θ′Xt. Then PCR can be cast

as the regularized empirical risk minimization problem given by

θ̂PCR ∈ arg min
θ∈Rp

RT (θ) s.t. V ′
Rθ = 0 , (2)

where

RT (θ) =
1

T

T

t=1

(Yt − fθ t)
2

is the empirical risk and

VR = (vK+1, . . . , vp) ,

1We remark that in this paper we use the expression “empirical risk minimization for principal com-
ponent regression” only for simplicity. A more appropriate name for the procedure we study would be
“regularized empirical risk minimization based on principal component analysis”.
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where vi is the eigenvector associated with the i-th largest eigenvalue of the sample covari-

ance matrix of the predictors Σ = X ′X/T . The vector θ̂PCR defined in (2) is the solution

to a least squares problem subject to a set of linear constraints. It is straightforward to

verify that f̂PCR
t = θ̂′

PCRXt = ϑ̂′ Pt, which implies that the forecasts produced by PCR

may be equivalently expressed as linear forecasts based on constrained least squares.

One of the main objectives of learning theory is to obtain a bound on the predictive

performance of the ERM relative to the optimal risk that can be achieved within the given

class of prediction rules. We define the risk of a prediction rule as R(θ) = E [(Yt − fθ t)
2].

The optimal risk is defined as the risk of a prediction rule associated with a θ∗ such that

R(θ∗) = min
θ∈Rp

E

(Yt − fθ t)

2

.

The conditional risk of PCR is used to measure predictive performance. This is given by

R(θ̂PCR) = E

(Yt − f̂PCR

t )2
 θ̂PCR = θ̂PCR(D)


, (3)

where (Yt,Xt)
′ in (3) denotes an element of the process assumed to be drawn indepen-

dently of D. The performance measure in (3) can be interpreted as the risk of the ERM

obtained from the “training” sample D over the “validation” observation (Yt,Xt)
′. Then

our aim is to find a pair (BT (p,K), δT ) such that BT (p,K) → 0 and δT → 0 as T → ∞

for which

R(θ̂PCR) ≤ R(θ∗) +BT (p,K) (4)

holds with probability at least 1 − δT for any T sufficiently large. The inequality in (4)

is commonly referred to as an oracle inequality. Oracle inequalities such as (4) provide

non-asymptotic guarantees on the performance of the ERM and imply that the ERM

asymptotically performs as well as the best linear predictor. We remark that the perfor-

mance measure in (3) allows us to keep our analysis close to the bulk of the contributions

in the learning theory literature (which typically focus on the analysis of i.i.d. data) and

facilitates comparisons. We remark that Brownlees and Guðmundsson (2025) and Brown-
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lees and Llorens-Terrazas (2025) consider alternative performance measures such as the

conditional out-of-sample average risk of the ERM, which has a more attractive interpre-

tation for time series applications. It turns out that these alternative measures lead to

essentially the same theoretical analysis at the expense of introducing additional notation.

We therefore focus on the performance measure defined in (4) for clarity.

This paper is related to various strands of the literature. First, the vast literature on

approximate factor models, principal component analysis and spiked covariance models,

which includes Wang and Fan (2017), Donoho, Gavish, and Johnstone (2018), Forni,

Hallin, Lippi, and Reichlin (2000, 2005), Bai and Ng (2006, 2019), Bai and Li (2012, 2016),

Lam, Yao, and Bathia (2011), Fan, Liao, and Wang (2016), Gonçalves and Perron (2020),

Barigozzi and Cho (2020), Su and Wang (2017) and Fan, Masini, and Medeiros (2024). In

particular, this work is close to the important contribution of Fan et al. (2024) that studies

the properties of a large class of high-dimensional models, which includes factor models,

and establishes results on the predictive performance of such a class. Second, it is related

to the literature on the small-ball method, which includes Lecué and Mendelson (2016),

Lecué and Mendelson (2017), Mendelson (2018) and Lecué and Mendelson (2018). Third,

the literature on empirical risk minimization for linear regression, which includes Birge

and Massart (1998) and Tsybakov (2003) among others. In particular, our contribution

is close to the subset of the literature that deals with dependent data, as in Jiang and

Tanner (2010); Brownlees and Guðmundsson (2025).

The rest of the paper is structured as follows. Section 2 introduces additional basic

notation, assumptions and preliminary results. Section 3 contains the main result of the

paper and its proof is outlined in Section 4. Concluding remarks follow in Section 5. All

the remaining proofs are given in the appendix.

2 Notation, Preliminaries and Assumptions

In this section we lay out the assumptions required for our analysis. Our assumptions

may be interpreted as the union of standard conditions employed in the approximate
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factor model literature (Bai and Ng, 2002; Fan et al., 2011) and conditions employed

in the learning literature based on the small-ball method (Mendelson, 2018; Lecué and

Mendelson, 2018; Brownlees and Guðmundsson, 2025).

We introduce some basic notation. For a generic vector x ∈ Rd we define xr as

[
d

i=1 |xi|r]1/r for 1 ≤ r < ∞ and maxi=1,...,d |xi| for r = ∞. For a generic random variable

X ∈ R we define XLr as [E(|X|r)]1/r for 1 ≤ r < ∞ and inf{a : P(|X| > a) = 0} for

r = ∞. For a positive semi-definite matrix M we use M1/2 to denote the positive semi-

definite square root matrix of M and M−1/2 to denote the generalized inverse of M1/2.

For a generic matrix M we use M2 to denote the spectral norm of M.

We begin with a preliminary lemma that establishes the population analogue of the

principal components decomposition of the prediction vector Xt introduced in (1).

Lemma 1. Let Xt be a zero-mean p-dimensional random vector with Σ = E(XtX
′
t).

For any K ∈ {1, . . . p}, define ΛK = diag(λ1, . . . ,λK), ΛR = diag(λK+1, . . . ,λp), VK =

(v1, . . . ,vK) and VR = (vK+1, . . . ,vp) where λ1, . . . ,λp and v1, . . . ,vp denote the sequence

of eigenvalues of Σ in a non-increasing order and the corresponding sequence of eigenvec-

tors.

Then, (i) it holds that

Xt = BPt + ut ,

where B = VKΛ
1/2
K , Pt = Λ

−1/2
K V ′

KXt and ut = VR(V
′
RVR)

−1V ′
RXt with B′B diagonal,

E(PtP
′
t ) = IK, E(utu

′
t) = VRΛRV

′
R and E(Ptu

′
t) = 0K×p. (ii) Let θ∗ ∈ Rp be the vector

of coefficients of the best linear predictor of Yt based on Xt. Then, it holds that

X ′
tθ

∗ = P ′
tϑ

∗ + u′
tγ

∗ ,

where ϑ∗ = Λ
1/2
K V ′

Kθ
∗ and γ∗ = VR(V

′
RVR)

−1V ′
Rθ

∗.

Parts (i) of Lemma 1 states that Xt can decomposed into a linear combination of the

matrix of coefficients B with the random vector Pt plus the residual random vector ut,

where Pt and ut are orthogonal. We call Pt the population principal components and ut

6



the idiosyncratic component. Part (ii) implies that the best linear predictor for Yt can

be alternatively represented as a function of the population principal components Pt and

the idiosyncratic component ut with the coefficient vectors ϑ∗ and γ∗. Note that since

Pt and ut are orthogonal, ϑ∗ may be interpreted as the best linear predictor based on the

population principal components Pt. We remark that, clearly, in the definitions of ut and

γ∗ the matrix VR(V
′
RVR)

−1V ′
R may be simplified to VRV

′
R but we prefer to express it in

this way to emphasize that this is a projection matrix. Last note that the decomposition

established in part (ii) holds for any vector in Rp but for our purposes it suffices to focus

on the vector of coefficients of the best linear predictor. Also notice that the vector of

coefficients of the best linear predictor may not be unique, but this raises no issues in our

setup.

We lay out the assumptions of our analysis. We say that the d-dimensional random

vector U is sub-Gaussian with parameters Cm > 0 if, for any ε > 0, it holds that

P


sup

v:v2=1

|v′U | > ε


≤ exp(−Cmε

2) .

For a univariate random variable U this is equivalent to P(|U | > ε) ≤ exp(−Cmε
2).

A.1 (Distribution). (i) There exists a positive constant Cm such that Yt, Yt − P ′
tϑ

∗

and Zt = Σ−1/2Xt with Σ = E(XtX
′
t) are sub-Gaussian with parameter Cm. (ii) There

exists a constant CZ and a p-dimensional spherical random vector S such that for any

B ∈ B(Rp) it holds that P(Zt ∈ B) ≤ CZP(S ∈ B), where the spherical random vector

S is such that its density exists and the marginal densities of its components are bounded

from above.

Part (i) states that the tails of the data decay exponentially. More precisely it assumes

that the prediction target Yt, the prediction error of the best linear predictor based on

the principal components Pt given by Yt −P ′
tϑ

∗ and the standardized predictors Zt have

sub-Gaussian tails. We remark that such a condition is fairly standard in the analysis of

large-dimensional factor models (Fan et al., 2011). We also remark that the sub-Gaussian

condition may be replaced by a sub-Weibull condition at the expense of longer proofs
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(Wong, Li, and Tewari, 2020). Part (ii) is a regularity condition on the density of the

standardized predictors Zt that is required to establish upper bounds on the probability

of a certain event associated with the vector of predictors Xt in one of the intermediate

propositions of our analysis. The same condition is assumed in Brownlees and Guðmunds-

son (2025).

Let F t
−∞ and F∞

t+l be the σ-algebras generated by {(Ys,X
′
s)

′ : −∞ ≤ s ≤ t} and

{(Ys,X
′
s)

′ : t+l ≤ s ≤ ∞} respectively for some t ∈ Z and define the α-mixing coefficients

α(l) = sup
A∈Ft

−∞,B∈F∞
t+l

|P (A ∩B)− P (A)P (B)| .

A.2 (Dependence). There exist constants Cα > 0 and rα > 0 such that the α-mixing

coefficients satisfy α(l) ≤ exp(−Cαl
rα).

A.2 states that the process {(Yt,X
′
t)

′} has geometrically decaying strong mixing co-

efficients, which is a fairly standard assumption in the analysis of large dimensional time

series models (Jiang and Tanner, 2010; Fan et al., 2011; Kock and Callot, 2015).

A.3 (Eigenvalues). There is an integer K ∈ {1, . . . , p}, a constant α ∈ (1/2, 1] and

a sequence of non-increasing nonnegative constants c1, . . . , cp with cK > 0 such that,

λi = cip
α for i = 1, . . . , K, λi = ci for i = K + 1, . . . , p.

A.3 states that the first K eigenvalues of the covariance matrix Σ diverge as the cross-

sectional dimension p becomes large. The rate of divergence is determined by α. We

distinguish between two regimes that depend on the value of this constant. When α = 1

we say that we are in the strong signal regime, which is analogous to (classic) factor

models with pervasive factors (Stock and Watson, 2002; Bai and Ng, 2002; Bai, 2003; Fan

et al., 2013). When α ∈ (1/2, 1) we say that we are in the weak signal regime, which is

analogous to weak factor models (Onatski, 2012; Bai and Ng, 2023). We remark that this

assumption is weaker than Fan et al. (2013), which only allows for strong signals. We

also point out that K here is assumed to be known and that there is a large literature

devoted to the estimation of this quantity (Bai and Ng, 2002; Amengual and Watson,
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2007; Onatski, 2010; Lam and Yao, 2012; Ahn and Horenstein, 2013; Yu, He, and Zhang,

2019). Last, it is important to emphasize that the assumption allows for the non-diverging

eigenvalues of Σ to be zero, so our framework allows Σ to be singular.

A.4 (Number of Predictors and Principal Components). (i) There are constants

Cp > 0 and rp ∈ (0, rp) such that p = ⌊CpT
rp⌋ where rp = rα ∧ 1

rα+1
rα

−α
. (ii) There are

constants CK > 0 and rK ∈ [0, rK) such that K = ⌊CKT
rK⌋ where rK = 1− rp(1− α) ∧

1
3+ 2

rα

.

A.4 states that the number of predictors and the number of principal components

are allowed to increase as a function of the sample size T . The rate of growth of these

quantities depends on the rate of decay of the strong mixing coefficients (as measured

by rα) and the strength of the signal (as measured by α). The less dependence and the

stronger the signal, the larger the numbers of allowed predictors and principal components.

The assumption allows the number of predictors to be larger than the sample size T

whereas the number of principal components is at most T 1/3 (up to a proportionality

constant). It is important to emphasize that when the signal is weaker, the maximum

rate of growth of the number of predictors is smaller. The condition on the maximum rate

of growth of the number of predictors rp is analogous to condition (9) in Uematsu and

Yamagata (2022), who study the properties of factor models in the weak signal regime.

A.5 (Identification/Small-ball). There exist positive constants κ1 and κ2 such that,

for each θ1,θ2 ∈ Rp, and for each t = 1, . . . , T

P (|fθ1 t − fθ2 t| ≥ κ1fθ1 t − fθ2 tL2) ≥ κ2 .

A.5 is the so-called small-ball assumption, and it is stated here as it is formulated in

Lecué and Mendelson (2016). This assumption can be interpreted as an identification con-

dition. If we define δ = (θ1−θ2) then the condition is equivalent to P (|δ′Xt| ≥ κ1δ′XtL2) ≥

κ2, which can be seen as requiring the random variable δ′Xt to not have excessive mass

in a neighbourhood around zero. We remark that the constants κ1 and κ2 measure the
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strength of the identification in the sense that the larger the value of these constants the

stronger the identification condition. We also remark that Brownlees and Guðmundsson

(2025) discuss conditions that imply A.5.

3 Performance of Empirical Risk Minimization

We now state our main result on the performance of empirical risk minimization.

Theorem 1. Suppose A.1–A.5 are satisfied.

Then for any η > 0 there exists a constant C > 0 such that, for any T sufficiently

large,

R(θ̂PCR) ≤ R(θ∗) + 2(θ∗)′VRΛRV
′
Rθ

∗ + C


1

p2α−1
+


p

Tpα

2

p
2
rα +

K

T


log(T ),

holds with probability at least 1− T−η.

The theorem establishes a regret bound on the excess risk of PCR relative to the best

linear predictor that can be obtained on the basis of the predictors Xt. The gap is made

up of two terms. The first can interpreted as the approximation error of PCR and the

second as the estimation error. The approximation error measures the gap between the

performance of the best linear predictor based on the population principal components Pt

and the best linear predictor based on the predictors Xt. The estimation error measures

the gap between the performance of PCR relative to the best linear predictor based on

the population principal components Pt.

A number of additional remarks on Theorem 1 are in order. First, it is insightful to

provide an alternative representation of the approximation error of PCR. This may be

equivalently expressed as

(θ∗)′VRΛRV
′
Rθ

∗ = Λ1/2
R V ′

Rθ
∗22 = Λ1/2

R V ′
RVR(V

′
RVR)

−1V ′
Rθ

∗22 = (γ∗)′VRΛRV
′
Rγ

∗ .

This highlights that the approximation error of PCR is small when the projection of
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the best linear predictor θ∗ on the subspace spanned by the population eigenvectors

vK+1, . . . ,vp is small. Differently put, if the contribution of the idiosyncratic component

vector ut is negligible then PCR has a negligible approximation error. Clearly, when

γ∗ = 0 the best linear predictor based on Xt coincides with the best linear predictor

based on Pt and the approximation error is zero.

Second, it is interesting to provide some comments on the behaviour of the estimation

error. Under the rate conditions of A.4 the estimation error is asymptotically negligible

as T → ∞. We remark that the condition p/(pαT ) → 0 as T → ∞ is also required by

Bai and Ng (2023) in the analysis of approximate weak factor models. The estimation

error is also influenced by the degree of persistence in the data, as measured by rα,

and in particular the more dependent the data are the slower the convergence of the

estimation error to zero. We remark that the results of Bai and Ng (2023), among others,

do not depend on the degree of persistence of the data. This is due to the fact that

their analysis relies on higher level conditions that imply sharp rates of convergence of

certain key estimators in the analysis. It is also interesting to note that the estimation

error is made up of three terms that can be easily associated with the different estimation

problems embedded in PCR. The first two terms capture the estimation error of the

principal components whereas the third one can be interpreted as the estimation error

the principal component regression if the population principal components were observed.

Last, an important question concerning the estimation error is whether the rate obtained

for it in the theorem is optimal. We provide insights on this question below in Section

3.1.

3.1 Optimal Performance

A natural question that arises upon inspection of Theorem 1 is whether the learning rate

for the estimation error is, in some appropriate sense, optimal. We compare the learning

rate established by the theorem with the optimal learning rate that could be achieved if

the population principal components were observed. In this case it is well known that the
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optimal rate is of the order K/T (Tsybakov, 2003), which is achieved by the least squares

estimator based on the population principal components. In this section we provide

conditions under which the optimal rate is achieved up to a logarithmic factor. We call

this the near-optimal rate. For ease of exposition we assume that the approximation error

is zero throughout this section.

For a given choice of the signal strength α, degree of dependence rα and the rate of

growth of the number of principal components rK , it is straightforward to verify that the

near-optimal rate can be recovered in Theorem 1 provided that

1− rK
2α− 1

<
1 + rK

2− 2α + 2/rα
,

and that the rate of growth of the number of parameters allowed is such a scenario is

rp ∈

1− rK
2α− 1

,
1 + rK

2− 2α + 2/rα


.

In particular we note that the near-optimal rate can be achieved in the both the strong

signal (α = 1), and the weak signal (α < 1) cases, provided that α > 2/3. The larger the

values of α, rα and rK , the larger the range of admissible growth rates for the number of

predictors rp.

It is interesting to provide concrete examples of these conditions. In the presence of a

strong signal (α = 1), a fixed number of principal components (rK = 0) and independent

data (rα = ∞)2 we obtain that

R(θ̂)−R(θ∗) ≤ C


1

p
+

1

T 2
+

K

T


log(T ) = O


K

T
log(T )


,

when rp ∈ [1,∞). In the presence of a weak signal (α < 1), a fixed number of principal

components (rK = 0) and independent data (rα = ∞) we obtain that

R(θ̂PCR)−R(θ∗) = O


1

p2α−1
+

p2−2α

T 2
+

K

T


log(T ) = O


K

T
log(T )


,

2The proofs of this manuscript assume that rα is finite.
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when rp ∈ [1/(2α− 1), 1/(2− 2α)]. In particular when α = 3/4 the rate of growth of the

number of parameters required to achieve near-optimal performance is rp = 2.

4 Proof of Main Result

We introduce some additional notation. In this section and in the appendices we use

the subscript s to denote the index of an observation in the training sample D and the

subscript t to denote the index of a validation observation. Also, for some random variable

X we use XL2 to denote


E(X2|D).

The proof of Theorem 1 begins with a decomposition of an upper bound of the ex-

cess risk of the empirical risk minimizer. Define the approximate rotation matrix H =

Λ−1/2
K

V ′
KVKΛ

1/2
K (Bai and Ng, 2002) and the infeasible PCR estimator ϑ̃ = argminϑ∈RK

1
T

T
t=1(Yt−

P ′
tϑ)

2. The following lemma provides a useful bound for the excess risk. We remark that

the lemma only requires stationarity and finite variance.

Lemma 2. Suppose that {(Yt,X
′
t)

′} is a stationary sequence taking values in Y × X ∈

R× Rp such that E(Y 2
t ) < ∞ and E(X2

i t) < ∞ for all i = 1, . . . , p.

Then it holds that

R(θ̂PCR)−R(θ∗) ≤ 2 max
1≤s≤T

{Y 2
s }E( Pt−HPt22|D)+4ϑ̃−H ′ϑ̂22+4ϑ∗−ϑ̃22+2u′

tγ
∗2L2

.

(5)

Lemma 2 implies that in order to control the excess risk of PCR it suffices to provide

appropriate bounds on the four terms on the right hand side of (5). The following four

propositions establish such bounds.

The first two propositions control the terms E( Pt −HPt22|D) and ϑ̃−H ′ϑ̂22. We

remark that these two terms capture the risk of PCR that is due to the estimation of

the principal components. The proof of the propositions is based on standard arguments

from the approximate factor model literature (Bai and Ng, 2002; Fan et al., 2011).

Proposition 1. Suppose A.1–A.4 are satisfied.
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Then for any η > 0 and any T sufficiently large,

E( Pt −HPt22|D) ≤ cK+1

2c2K

1

p2α−1
,

holds with probability at least 1− T−η.

Proposition 2. Suppose A.1–A.4 are satisfied.

Then for any η > 0 there is C > 0 such that, for any T sufficiently large,

ϑ̃−H ′ϑ̂22 ≤ C





K

T
+

log(T )

T
+


(p+ log(T ))

rα+1
rα

pαT

2

+
1

p2α




 log(T ),

holds with probability at least 1− T−η.

The next proposition controls the term ϑ∗ − ϑ̃22. We remark that this term may

be interpreted as the risk of the least squares estimator of PCR based on the population

principal components. The proof of the proposition is based on the so-called small-ball

method, which is the same proof strategy used in Brownlees and Guðmundsson (2025).

Proposition 3. Suppose A.1–A.5 are satisfied.

Then for any η > 0 there is a C > 0 such that, for any T sufficiently large,

ϑ∗ − ϑ̃22 ≤ C
K log(T )

T
,

holds with probability at least 1− T−η.

The following proposition controls the error u′
tγ

∗2L2
, which can be interpreted as the

approximation error of PCR.

Proposition 4. Suppose A.1 and A.3 are satisfied.

Then it holds that

u′
tγ

∗2L2
= (θ∗)′VRΛRV

′
Rθ

∗ .
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The claim of Theorem 1 follows from Propositions 1 to 4 together with the implication

rule, the union bound and the fact that the sub-Gaussian assumption on Yt (A.1) implies

that for each η > 0 there is a C > 0 such that

P

max
1≤s≤T

{Y 2
s } ≤ C log(T )


≤ 1− T−η .

5 Conclusions

This paper establishes predictive performance guarantees for principal component re-

gression. Our analysis has a number of highlights. First, the analysis we carry out is

nonparametric, in the sense that the relation between the prediction target and the pre-

dictors is not specified and, in particular, we do not assume that the prediction target is

generated by a factor model. Second, our framework considers both the cases in which

the largest eigenvalues of the covariance matrix of the predictors diverge linearly in the

number of predictors (strong signal regime) or sublinearly (weak signal regime). A high-

light of our results is that we show that, under appropriate conditions, PCR achieves

optimal performance (up to a logarithmic factor) in both the strong signal and weak

signal regimes.

A Proofs

We recall that Σ = (VKΛKV
′
K+VRΛRV

′
R) where VK = (v1, . . . ,vK), VR = (vK+1, . . . ,vp),

ΛK = diag(λ1, . . . ,λK) and ΛR = diag(λK+1, . . . ,λp). Analogously, we have that Σ =

( VK
ΛK

V ′
K+

VR
ΛR

V ′
R) where VK = (v̂1, . . . , v̂K), VR = (v̂K+1, . . . , v̂p), ΛK = diag(λ̂1, . . . , λ̂K)

and ΛR = diag(λ̂K+1, . . . , λ̂p).

Proof of Lemma 1. (i) We have that BPt + ut = VKV
′
KXt + (Ip − VKV

′
K)Xt = Xt.

We have that B′B = Λ
1/2
K V ′

KVKΛ
1/2
K = ΛK , that E(PtP

′
t ) = Λ

−1/2
K V ′

K(VKΛKV
′
K +

VRΛRV
′
R)VKΛ

−1/2
K = IK , E(utu

′
t) = VRV

′
R(VKΛKV

′
K + VRΛRV

′
R)VRV

′
R = VRΛRV

′
R,

and that E(Ptu
′
t) = Λ

−1/2
K V ′

K (VKΛKV
′
K + VRΛRV

′
R)VRV

′
R = 0K×p. (ii) Note that
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X ′
tθ

∗ = P ′
tB

′θ∗ + u′
tθ

∗ and that P ′
tB

′θ∗ = P ′
tΛ

1/2
K V ′

Kθ
∗ = P ′

tϑ
∗ and u′

tθ
∗ = u′

t(Ip −

VK(V
′
KVK)

−1V ′
K)θ

∗ = u′
tγ

∗ since Ip − VK(V
′
KVK)

−1V ′
K is idempotent.

Proof of Lemma 2. Consider the excess risk decomposition given by

R(θ̂PCR)−R(θ∗) = Yt − P ′
t ϑ̂2L2

− Yt − P ′
tH

′ϑ̂2L2

+ Yt − P ′
tH

′ϑ̂2L2
− Yt − P ′

t ϑ̃2L2

+ Yt − P ′
t ϑ̃2L2

− Yt − P ′
tϑ

∗2L2

+ Yt − P ′
tϑ

∗2L2
− Yt −X ′

tθ
∗2L2

.

The projection theorem, the fact (a + b)2 ≤ 2a2 + 2b2, the fact E(Ptu
′
t) = 0 and the

Cauchy-Schwarz inequality imply

Yt − P ′
t ϑ̂2L2

− Yt − P ′
tH

′ϑ̂2L2

= Yt −X ′
tθ

∗ +X ′
tθ

∗ − P ′
t ϑ̂2L2

− Yt −X ′
tθ

∗ +X ′
tθ

∗ − P ′
tH

′ϑ̂2L2

= X ′
tθ

∗ − P ′
t ϑ̂2L2

− X ′
tθ

∗ − P ′
tH

′ϑ̂2L2

≤ 2P ′
tϑ

∗ − P ′
tH

′ϑ̂+ u′
tγ

∗2L2
+ 2P ′

tH
′ϑ̂− P ′

t ϑ̂2L2
− P ′

tϑ
∗ − P ′

tH
′ϑ̂2L2

− u′
tγ

∗2L2

= P ′
tϑ

∗ − P ′
tH

′ϑ̂2L2
+ 2P ′

tH
′ϑ̂− P ′

t ϑ̂2L2
+ u′

tγ
∗2L2

≤ 2P ′
tϑ

∗ − P ′
t ϑ̃2L2

+ 2P ′
t ϑ̃− P ′

tH
′ϑ̂2L2

+ 2P ′
tH

′ϑ̂− P ′
t ϑ̂2L2

+ u′
tγ

∗2L2

≤ 2ϑ∗ − ϑ̃22 + 2ϑ̃−H ′ϑ̂22 + 2ϑ̂22E( Pt −HPt22|D) + u′
tγ

∗2L2
. (6)

To see how the projection theorem applies to the second equality note that P ′
t ϑ̂ =

X ′
t
VK

Λ−1/2
K ϑ̂ and P ′

tH
′ϑ̂ = X ′

tVKΛ
−1/2
K H ′ϑ̂. Furthermore, we have that

ϑ̂2 =

1

T
P ′Y


2

≤




1

T
P ′


2




1

T
Y


2

=


1

T
Y 2 ≤ max

1≤s≤T
|Ys| . (7)

Next, the projection theorem, the Cauchy-Schwarz inequality and the inequality 2ab ≤
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a2 + b2 imply that

Yt − P ′
tH

′ϑ̂2L2
− Yt − P ′

t ϑ̃2L2

= Yt − P ′
tϑ

∗ + P ′
t (ϑ

∗ −H ′ϑ̂)2L2
− Yt − P ′

tϑ
∗ + P ′

t (ϑ
∗ − ϑ̃)2L2

= P ′
t (ϑ

∗ −H ′ϑ̂)2L2
− P ′

t (ϑ
∗ − ϑ̃)2L2

= E

[P ′

t (ϑ
∗ −H ′ϑ̂)− P ′

t (ϑ
∗ − ϑ̃)][P ′

t (ϑ
∗ −H ′ϑ̂) + P ′

t (ϑ
∗ − ϑ̃)]

D


= E

[P ′

t (ϑ̃−H ′ϑ̂)][P ′
t (ϑ

∗ −H ′ϑ̂+ ϑ∗ − ϑ̃)]
D



= E

[P ′

t (ϑ̃−H ′ϑ̂)][2P ′
t (ϑ

∗ − ϑ̃) + P ′
t (ϑ̃−H ′ϑ̂)]

D


= P ′
t (ϑ̃−H ′ϑ̂)2L2

+ 2E

(ϑ∗ − ϑ̃)′PtP

′
t (ϑ̃−H ′ϑ̂)

D


= ϑ̃−H ′ϑ̂22 + 2(ϑ∗ − ϑ̃)′(ϑ̃−H ′ϑ̂)

≤ ϑ̃−H ′ϑ̂22 + 2ϑ∗ − ϑ̃2ϑ̃−H ′ϑ̂2 ≤ 2ϑ̃−H ′ϑ̂22 + ϑ∗ − ϑ̃22 . (8)

The projection theorem implies

Yt − P ′
t ϑ̃2L2

− Yt − P ′
tϑ

∗2L2
= P ′

t ϑ̃− P ′
tϑ

∗2L2
= ϑ̃− ϑ∗22, (9)

Yt − P ′
tϑ

∗2L2
− Yt −X ′

tθ
∗2L2

= u′
tγ

∗2L2
. (10)

The claim then follows from (6), (7), (8), (9) and (10).

A.1 Proof of Proposition 1

Proof of Proposition 1. We begin by noting that

Pt −HPt = Λ−1/2
K

V ′
KXt − Λ−1/2

K
V ′
KVKΛ

1/2
K Λ

−1/2
K V ′

KXt = Λ−1/2
K

V ′
K(Ip − VKV

′
K)Xt

= Λ−1/2
K

V ′
KVRV

′
RXt = Λ−1

K
Λ−1/2

K
V ′
K
VK

ΛK
V ′
KVRV

′
RXt

= Λ−1
K

Λ−1/2
K

V ′
K(

VK
ΛK

V ′
K + VR

ΛR
V ′
R)VRV

′
RXt

= Λ−1
K

Λ−1/2
K

V ′
K

1

T
X ′XVRV

′
RXt = Λ−1

K

1√
T

P ′ 1√
T
XVRV

′
RXt .
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This implies that for any ε > 0

P

E

 Pt −HPt22

D

≥ ε


≤ P


E

Λ−1
K


2

2


1√
T

P ′

2

2


1√
T
XVRV

′
RXt


2

2

D

≥ ε



= P

Λ−1
K


2

2
E


1√
T
XVRV

′
RXt


2

2

D

≥ ε



≤ P
Λ−1

K


2

2
≥ ε1


+ P


E


1√
T
XVRV

′
RXt


2

2

D

≥ ε2


, (11)

for some ε1, ε2 > 0 such that ε = ε1ε2. We proceed by establishing bounds for the two

terms in (11). First, we note that it follows from Proposition A.1 that for any η > 0, for

all T sufficiently large, it holds that

P
Λ−1

K


2

2
≥ 4

c2K

1

p2α


= O


1

T η


. (12)

Second, we establish a bound for the second term of equation (11). We have that

P


E


1√
T
XVRV

′
RXt


2

2

D

≥ ε2


= P


1

T
E


T

s=1

(X ′
sVRV

′
RXt)

2

D

≥ ε2



= P


1

T
E


T

s=1

(X ′
sVRV

′
RXtX

′
tVRV

′
RXs)

D

≥ ε2


= P


1

T

T

s=1

X ′
sVRΛRV

′
RXs ≥ ε2



= P


p


1

T

T

s=1

X ′
sVRΛRV

′
RXs

p
− tr(Λ2

R)

p


+ tr(Λ2

R) ≥ ε2



≤ P


p


1

T

T

s=1

X ′
sVRΛRV

′
RXs

p
− tr(Λ2

R)

p


+ c2K+1p ≥ ε2



where we have used the fact that E(X ′
sVRΛRV

′
RXs) = tr(Λ1/2

R V ′
RE(XsX

′
s)VRΛ

1/2
R ) =

tr(Λ2
R) < c2K+1p. It is straightforward to verify that the sequence {X ′

sVRΛRV
′
RXs/p −

tr(Λ2
R)/p} satisfies the conditions of Lemma B.2, implying that for each η > 0 there exists

a constant C such that, for all T sufficiently large, it holds that

P


E


1√
T
XVRV

′
RXt


2

2

D

≥ c2K+1p+ Cp


log(T )

T


= O


1

T η


. (13)
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The claim of the proposition then follows from inequalities (12) and (13).

Proposition A.1. Suppose A.1–A.4 are satisfied.

Then for any η > 0, for any T sufficiently large, we have that P(λ̂K ≥ cKp
α/2) ≥

1− T−η.

Proof. A.3 implies λ̂K ≥ λK − |λK − λ̂K | ≥ cKp
α − Σ − Σ2 where the last inequality

follows from Weyl’s inequality. To establish the claim, it suffices to show that for all T

sufficiently large,
Σ−Σ


2
≤ cK

2
pα (14)

holds with probability at least 1− T−η. Using the representation of Lemma 1 we get

Σ−Σ =
1

T

T

t=1

(BPt + ut)(BPt + ut)
′ − E(XtX

′
t)

=
1

T
B

T

t=1

(PtP
′
t − IK)B

′ +
1

T

T

t=1

(utu
′
t − E (utu

′
t))

+
1

T

T

t=1

(BPtu
′
t) +

1

T

T

t=1

(utP
′
tB

′) = D1 +D2 +D3 +D4 .

This, in turn, implies that

P
Σ−Σ


2
> ε


≤

4

i=1

P (Di2 > εi) , (15)

for some ε1, ε2, ε3, ε4 > 0 such that ε = ε1 + ε2 + ε3 + ε4. Proposition A.3 and A.3 imply

that for any η > 0 there is a positive constant C1 such that

D12 >


1

T

T

t=1

(PtP
′
t − IK)


2

BB′2 ≥ pαC1


K

T
+


log T

T


= ε1 (16)

holds with probability at most T−η. Proposition A.2 implies that for any η > 0 there is

a positive constant C2 such that

D22 > C2



(p+ log(T ))
rα+1
rα

T
+


(p+ log(T ))

rα+1
rα

T



 = ε2 (17)
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holds with probability at most T η. Proposition A.4 and A.3 imply that for any η > 0

there is a positive constant C3 such that

D32 >


1

T

T

t=1

Ptu
′
t


2

B2 ≥ pα/2C3


pK log T

T
= ε3 (18)

holds with probability at most T−η. Last, note that D32 = D42 . Combining the

inequalities in (16), (17), (18) we get

P
Σ−Σ


2
< ε


≤ 1− 4

T η
,

where ε may be defined as

ε = pαC1


K

T
+


log T

T


+ pαC2



 1

pα
(p+ log(T ))

rα+1
rα

T
+

1

pα


(p+ log(T ))

rα+1
rα

T





+ 2pαC3


p1−αK log T

T
.

The claim follows after noting that A.4 implies that, for all T sufficiently large, ε ≤
cK
2
pα.

Proposition A.2. Suppose A.1–A.4 are satisfied. Then for any η > 0 there exists a

positive constant C such that, for any T sufficiently large,


1

T

T

t=1

utu
′
t − E (utu

′
t)


2

≥ C



(p+ log(T ))
rα+1
rα

T
+


(p+ log(T ))

rα+1
rα

T





holds with probability at most T−η.

Proof. We assume that cK+1 is positive (when cK+1 is zero the claim is trivial). Consider

the isotropic random vectors Σ
−1/2
u ut where Σu = E (utu

′
t) = VRV

′
RΣVRV

′
R and note
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that Vershynin (2012, Lemma 5.4) implies that if N is a 1
4
-net of Sp−1 then


1

T

T

t=1

Σ−1/2
u utu

′
tΣ

−1/2
u − Ip


2

= max
x∈Sp−1


1

T

T

t=1

(u′
tΣ

−1/2
u x)2 − 1



≤ 2max
x∈N


1

T

T

t=1

(u′
tΣ

−1/2
u x)2 − 1

 = 2max
x∈N


1

T

T

t=1

Wx t

 , (19)

where Wx t = (u′
tΣ

−1/2
u x)2 − 1. To establish the claim we first show that for all T

sufficiently large (19) can be bounded with high probability. We begin by establishing a

bound for a fixed vector x ∈ N . We enumerate three properties of the sequence {Wx t}.

First, E(Wx t) = 0 since E[(u′
tΣ

−1/2
u x)2] = x22 = 1. Second, Wx t is the de-meaned

square of a sub-Gaussian random variable with parameter Cm (which is independent of

x). To see this note that u′
tΣ

−1/2
u x = Z ′

tVRΛ
1/2
R V ′

RVRΛ
−1/2
R V ′

Rx = Z ′
tVRV

′
Rx where

Zt = Σ−1/2Xt. Define ρ = VRV
′
Rx2 and notice that ρ ∈ [0, 1]. If ρ ∈ (0, 1] then for any

ε > 0 it holds

P(|u′
tΣ

−1/2
u x| ≥ ε) = P


Z ′

tVRV
′
Rx

ρ

 ≥
ε

ρ


≤ exp(−Cm(ε/ρ)

2) ≤ exp(−Cmε
2)

where Cm > 0 is defined in A.1. If ρ = 0 then for any ε > 0 it holds P(|u′
tΣ

−1/2
u x| ≥ ε) =

0 ≤ exp(−Cmε
2). Therefore u′

tΣ
−1/2
u x is sub-Gaussian with parameter Cm. Third, the

sequence {Wx t}Tt=1 inherits the mixing properties of the sequence {(Yt,X
′
t)

′}Tt=1 spelled

out in A.2. These three facts imply that {Wx t} satisfies the conditions of Bosq (1998,

Theorem 1.4) (the Cr inequality and Boucheron, Lugosi, and Massart (2013, Theorem

2.1) imply that the condition spelled out in equation (1.33) of Bosq (1998) is satisfied).

Define εT =
C∗

1 (p+log(T ))
rα+1
rα

T
+


C∗

1 (p+log(T ))
rα+1
rα

T

1/2
and qT =


T

C∗
2 (p+log(T ))

1
rα


− 1 for

positive constants C∗
1 and C∗

2 to be chosen below. Notice that A.4 implies that for all

T sufficiently large it holds that qT ∈ [1, T
2
], as required by the theorem. Then for any

r ≥ 3 there exist a positive constant C1 that depends on Cm and r such that, for all T
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sufficiently large,

P


1

T

T

t=1

Wx t

 > εT


≤ a1T exp


− qT ε

2
T

C1 + C1εT


+ a2Tα


T

qT + 1

 2r
2r+1

(20)

holds, where a1T = 2T/qT + 2[1 + ε2T/(C1 + C1εT )], and a2T = 11T (1 + C1/εT ). We

proceed by bounding the r.h.s. of (20). First, for all T sufficiently large, we have

a1T exp


− qT ε

2
T

C1 + C1εT


≤


2T + 2 + 2

εT
C1


exp


−min(εT , ε

2
T )

2C1

qT



≤ exp


log


3T + 2

εT
C1


− C∗

1(p+ log(T ))
rα+1
rα

2TC1


T

C∗
2(p+ log(T ))

1
rα

− 1



≤ exp


−


C∗
1

2C1C∗
2

− 1


(p+ log T )


, (21)

where in the second inequality we use the fact that min(εT , ε
2
T ) ≥ C∗

1(p+ log(T ))
rα+1
rα /T

and the last from the condition rp < rα. Second, for all T sufficiently large, we have

a2Tα


T

qT + 1

 2r
2r+1

≤ exp


2 log(T )− Cα

2r

2r + 1


T

qT + 1
− 1

rα

≤ exp


2 log(T )− 1

2
Cα(C

∗
2)

rα
2r

2r + 1
(p+ log(T ))



≤ exp


−

Cα(C

∗
2)

rα
r

2r + 1
− 1


(p+ log(T ))


. (22)

Combining (21) and (22) we get that for a given x, for all T sufficiently large, it holds

P


1

T

T

t=1

Wx t

 > εT


≤ exp


−


C∗
1

2C1C∗
2

− 1


(p+ log T )



+ exp


−

Cα(C

∗
2)

rα
r

2r + 1
− 1


(p+ log(T ))


. (23)

The next step consist in taking the union bound over all the vectors x ∈ N . It follows

from Vershynin (2012, Lemma 5.2) that the cardinality of a 1
4
-net N of the unit sphere

Sp−1 is bounded by 9p. Setting C∗
2 =


(η+log(9)+1)(2r+1)

rCα

 1
rα and C∗

1 = 2C1C
∗
2(η+log(9)+1)
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in (23) we then obtain that, for all T sufficiently large,

P


max
x∈N


1

T

T

t=1

Wx t

 > εT


≤ 9p max

x∈N
P


1

T

T

t=1

Wx t

 > εT



≤ 2 exp (log(9)p− (η + log(9)) (p+ log(T ))) < 2 exp(−η log(T )) =
2

T η
.

The claim follows after noting that, for all T sufficiently large, it holds

P


1

T

T

t=1

utu
′
t − E (utu

′
t)


2

> 2Σu2εT


= P


1

T

T

t=1

Σ−1/2
u utu

′
tΣ

−1/2
u − Ip


2

> 2εT



≤ P


max
x∈N


1

T

T

t=1

Wx t

 > εT


= O


1

T η


,

and noting that A.3 implies that Σu2 = cK+1.

Let λmin(M ) denote the smallest eigenvalue of the square matrix M .

Proposition A.3. Suppose A.1, A.2 and A.4 are satisfied. Then for any η > 0 there

exists a positive constant C such that, for any T sufficiently large,

(i) P


1

T

T

t=1

PtP
′
t − E (PtP

′
t )


2

≥ C


K

T
+


log T

T


=

1

T η
, (24)

(ii) P


λmin


1

T

T

t=1

PtP
′
t


≤ 1

2


=

1

T η
, (25)

(iii) P








1

T

T

t=1

PtP
′
t

−1

− (E (PtP
′
t ))

−1


2

≥ C


K

T
+


log T

T



 =
1

T η
. (26)

Proof. (i) Following the same arguments of Proposition A.2 and denoting by N the 1
4
-net

of the unit sphere SK−1 we get that


1

T

T

t=1

PtP
′
t − E (PtP

′
t )


2

≤ 2max
x∈N


1

T

T

t=1

(P ′
tx)

2 − 1

 = 2max
x∈N


1

T

T

t=1

Wx t

 , (27)

where Wx t = (P ′
tx)

2 − 1. To establish the claim, we first show that for all T sufficiently

large (27) can be bounded with high probability. We note two properties of the sequence
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{Wx t}. First, E(Wx t) = 0 since E[(P ′
tx)

2] = x22 = 1. Second, Wx t is sub-exponential

with parameter C ′
m (which is independent of x and depending on Cm). To see this

note that |P ′
tx| = |Z ′

tV Λ1/2V ′VKΛ
−1/2
K x| = |Z ′

tVKx| where Zt = Σ−1/2Xt and that

VKx2 ∈ [0, 1]. Consider the decomposition
T

t=1 Wx t =
T

t=1 W
′
x t +

T
t=1 W

′′
x t where

W ′
x t = Wx t (|Wx t| ≤ bT ) − E (Wx t (|Wx t| ≤ bT )) and W ′′

x t = Wx t (|Wx t| > bT ) −

E (Wx t (|Wx t| > bT )). Then for any ε > 0 we have that

P



T

t=1

Wx t

 > ε


≤ P



T

t=1

W ′
x t

 >
ε

2


+ P



T

t=1

W ′′
x t

 >
ε

2


.

The sequence {W ′
x t}Tt=1 is such that W ′

x t∞ < 2bT and has the same mixing prop-

erties as {(Yt,Xt)}Tt=1 spelled out in A.2. These two facts imply that {W ′
x t} satisfies

the conditions of Liebscher (1996, Theorem 2.1). Define εT = C∗(
√
KT +

√
T log T ),

bT = 2
C′

m
[log(2Wx tL2

√
T/C∗) + C∗(K + log T )] and MT = ⌊b−1

T T
1
2/(

√
K +

√
log T )⌋

for positive constant C∗ to be chosen below. For all T sufficiently large, we have that

MT ∈ [1, T ] (note A.4 implies rk < 1/3) and 4(2bT )MT < εT , as required by the theorem.

Then, for all T sufficiently large,

P



T

t=1

W ′
x t

 > εT


< 4 exp


− ε2T
64 T

MT
D(T,MT ) +

16
3
bTMT εT


+ 4

T

MT

exp (−CαM
rα
T )

holds with D(T,MT ) = E
MT

t=1 W
′
x t

2

. Define γ(l) = |Cov(W ′

x t,W
′
x t+l)| for l =

0, . . . , T − 1 and note that D(T,MT ) ≤ MT

T−1
l=−T+1 γ(l). Define Cm 4 = Wx t2L4

(which

is a constant depending only on Cm). Then, for l = 0, . . . it holds that

γ(l) ≤ 12α(l)
1
2W ′

x t2L4
≤ 48α(l)

1
2Wx t2L4

≤ 48α(l)
1
2Cm,4 ,

where the first inequality follows from Davydov’s inequality (Bosq, 1998, Corollary 1.1)

and the second follows from the fact that W ′
x tL4 ≤ 2Wx t (|Wx t| ≤ bT )L4 ≤ 2WtL4 .

This implies that D(T,MT ) < Cσ2MT where Cσ2 = 96Cm,4

∞
l=0 α(l)

1
2 ∨ 1. We then use
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the inequality a2 + b2 ≤ (a+ b)2 for a, b > 0 to get that

P



T

t=1

W ′
x t

 > εT


≤ 4 exp


−
C∗2(

√
KT +


T log(T ))2

64TCσ2 + 16
3
bTMT εT


+ 4

T

MT

exp (−CαM
rα
T )

≤ 4 exp


−C∗2KT + C∗2T log(T )

64TCσ2 + 16
3
C∗T


+ 4T exp (−CαM

rα
T )

≤ 4 exp


− C∗2

64Cσ2 + 16
3
C∗ (K + log(T ))


+ 4 exp (log(T )− CαM

rα
T ) .

Note that for all T sufficiently large, we have M rα
T > K + log(T ) since rK < 1

3+ 2
rα

as

implied by A.4. We may write that

P



T

t=1

W ′
x t

 > εT


≤ 5 exp


− C∗2

64Cσ2 + 16
3
C∗ (K + log(T ))


. (28)

The sequence {W ′′
x t}Tt=1 is such that, for all T large enough,

P



T

t=1

W ′′
x t

 > εT


≤ 1

εT
E



T

t=1

W ′′
x t

 ≤
T

εT
E|W ′′

x t| ≤
2T

εT
E |Wx t (|Wx t| > bT )|

≤ 2T

εT
Wx tL2 (|Wx t| > bT )L2 =

2T

εT
Wx tL2P(|Wx t| > bT )

1
2 ≤ 2TWx tL2

εT
exp


−C ′

mbT
2



=
2TWx tL2

C∗(
√
KT +


T log(T ))

exp


−C ′

mbT
2


≤ 2Wx tL2

√
T

C∗ exp


−C ′

mbT
2



= exp


log


2Wx tL2

√
T

C∗


− C ′

mbT
2


= exp (−C∗(K + log(T ))) , (29)

where the first inequality follows from Markov’s inequality. Combining (28) and (29) we

have that, for all T sufficiently large,

max
x∈N

P


1

T

T

t=1

Wx t

 >
εT
T


≤ exp (−C∗(K + log(T ))) + 5 exp


− C∗2

64Cσ2 + 16
3
C∗ (K + log(T ))


,

for the fixed vector x. It remains to take the union bound over all the vectors x ∈ N .
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Using the same arguments of Proposition A.2 we have that, for all T sufficiently large,

P


max
x∈N


1

T

T

t=1

Wx t

 >
εT
T


≤ 9K max

x∈N
P


1

T

T

t=1

Wx t

 >
εT
T



≤ 9K exp (−C∗(K + log(T ))) + 9K · 5 exp

− C∗2

64Cσ2 + 64
3
C∗ (K + log(T ))


≤ 1

T η

where the last inequality follows for a sufficiently large choice of the constant C∗. The

claim follows after noting that, for all T sufficiently large, it holds

P


1

T

T

t=1

PtP
′
t − E (PtP

′
t )


2

> 2


K

T
+


log(T )

T


≤ P


max
x∈N


1

T

T

t=1

Wx t

 >
εT
T


≤ 1

T η
.

(ii) We begin by noting that

λmin


1

T

T

t=1

PtP
′
t


= min

x∈SK−1
x′


1

T

T

t=1

PtP
′
t


x

= min
x∈SK−1

x′IKx− x′


IK − 1

T

T

t=1

PtP
′
t


x ≥ 1−


1

T

T

t=1

PtP
′
t − IK


2

.

It then follows from part (i) that for any η > 0, for all T sufficiently large, 1−
 1
T

T
t=1 PtP

′
t − IK


2
≥

1
2

holds with at least probability 1− T−η, which implies the claim.

(iii) First, we condition on the event of part (ii), which implies that for any η > 0, for all

sufficiently large T ,


1
T

T
t=1 PtP

′
t

−1

exists. Then we note that conditional on the same

event for any η > 0 there exists a positive constant C such that, for all sufficiently large
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T , it holds that

P








1

T

T

t=1

PtP
′
t

−1

− E (PtP
′
t )

−1


2

≥ C

2


K

T
+


log(T )

T





= P








1

T

T

t=1

PtP
′
t

−1 
IK − 1

T

T

t=1

PtP
′
t


2

≥ C

2


K

T
+


log(T )

T





≤ P








1

T

T

t=1

PtP
′
t

−1

2

≥ 1

2



+ P


1

T

T

t=1

PtP
′
t − E (PtP

′
t )


2

≥ C


K

T
+


log(T )

T



=
2

T η
,

where we have used the fact that E(PtP
′
t )

−1 = IK . The unconditional probability of this

event being realized is (2T−η)(1− T−η) = T−η.

Proposition A.4. Suppose A.1, A.2, A.3 and A.4 are satisfied. Then for any η > 0

there exits a positive constant C such that, for any T sufficiently large, it holds that

P


1

T

T

t=1

Ptu
′
t


2

≥ C


pK log(T )

T


=

1

T η
.

Proof. We assume that cK+1 is positive (when cK+1 is zero the claim is trivial). Let Vij,t

denote Pitujt and Vj,t denote the j-th column of Ptu
′
t where 1 ≤ i ≤ K and 1 ≤ j ≤ p. We

begin by showing that, for each j, the sequence of K-dimensional random vectors {Vj,t}Tt=1

satisfies the conditions required in Lemma B.2. Lemma B.1.(ii) and (iii) establish that

Pt and ut are sub-Gaussian random vectors. Standard results on sub-Gaussian random

variables imply that

P


sup

v:v2=1

|V ′
j tv| > ε


≤ P


sup

v:v2=1

|P ′
tv||ujt| > ε


≤ exp(−C ′

mε)

for some C ′
m > 0. Lemma 1 implies that E(Vj,t) = E(Ptujt) = 0, hence Vj,t is a zero-

mean random vector. Moreover, standard properties of strong mixing processes imply

that {Vj,t}Tt=1 inherits the mixing properties of the sequence {(Yt,Xt)
′}Tt=1 spelled out

in A.2. Lastly, A.4 implies that K = ⌊CKT
rK⌋ where rK < 1. Then the conditions of
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Lemma B.2 applied to the sequence {Vj,t}Tt=1 are satisfied and picking η′ = η + rp we get

that there exists a C such that, for all T sufficiently large,

P


1

T

T

t=1

Ptu
′
t


2

≥ C


pK log(T )

T


≤ P


√
p max
1≤j≤p


1

T

T

t=1

Vj,t


2

≥ C


pK log(T )

T



≤ p max
1≤j≤p

P


1

T

T

t=1

Zj,t


2

≥ C


K log(T )

T


=

p

T η′
= C

T rp

T η+rp
=

C

T η
.

A.2 Proof of Proposition 2

Proof of Proposition 2. Recall that ϑ̃ =

1
T
P ′P

−1 1
T
P ′Y and ϑ̂ = 1

T
P ′Y and note that

ϑ̃−H ′ϑ̂ = ϑ̃−H−1HH ′ϑ̂ =


1

T
P ′P

−1
1

T
P ′Y −H−1HH ′ 1

T
P ′Y

=


1

T
P ′P

−1
1

T
P ′Y − 1

T
P ′Y


−H−1


HH ′ 1

T
P ′Y − 1

T
P ′Y +

1

T
P ′Y − 1

T
HP ′Y



=


1

T
P ′P

−1

− IK


1

T
P ′Y −H−1


(HH ′ − IK)


1

T
P ′ +


1

T


P ′ −HP ′


1

T
Y .

Then the triangle inequality and the implication rule imply that for any ε > 0 and εi > 0

for i = 1, . . . , 5 such that ε = ε1ε2 + ε3ε5 + ε4ε5 it holds that

P(ϑ̃−H ′ϑ̂2 > ε) ≤ P




1

T
P ′P

−1

− IK


2

> ε1


+ P


1√
T
P ′


2


1√
T
Y


2

> ε2



+ P (HH ′ − IK2 > ε3) + P


1√
T

 P ′ −HP ′

2
> ε4


+ P

H−1

2


1√
T
Y


2

> ε5


.

(30)

The claim then follows from Proposition A.7, Proposition A.3, Proposition A.5 and

Proposition A.6 by setting ε1 = C1(


K/T +


log(T )/T ), ε2 =


6 log(T )/Cm, ε3 =

C2[


K/T+


log(T )/T+(p+ log(T ))
rα+1
rα /(pαT )+1/pα], ε4 = C3[(p+ log(T ))

rα+1
rα /(pαT )+

1/pα] and ε5 =


3 log(T )/(2Cm). The same propositions imply that the r.h.s. of (30) can

be bounded by O(T−η).
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Proposition A.5. Suppose A.1–A.4 are satisfied.

Then for all η > 0 there exists a C > 0 such that, for any T sufficiently large,


1

T

 P − PH ′

2
≤ C


(p+ log(T ))

rα+1
rα

pαT
+

1

pα



holds with probability at least 1− T−η.

Proof of Proposition A.5. Let P = XVKΛ
−1/2
K and P = X VK

Λ−1/2
K where X = (X1, . . . ,XT )

′.

We note that

P − PH ′ = X VK
Λ−1/2

K −XVKΛ
1/2
K Λ

−1/2
K V ′

K
VK

Λ−1/2
K = X(Ip − VKV

′
K)

VK
Λ−1/2

K

= XVRV
′
R
VK

Λ−1/2
K = XVRV

′
R
VK

ΛK
V ′
K
VK

Λ−1/2
K

Λ−1
K

= XVRV
′
R(

VK
ΛK

V ′
K + VR

ΛR
V ′
R)

VK
Λ−1/2

K
Λ−1

K =
1

T
XVRV

′
RX

′X VK
Λ−1/2

K
Λ−1

K

=
1√
T
XVRV

′
RX

′ 1√
T

P Λ−1
K =

1√
T

T

t=1

utu
′
t

1√
T

P Λ−1
K .

This implies that for any ε, ε1, ε2 > 0 such that ε = ε1ε2 it holds

P


1

T

 P − PH ′

2
> ε


≤ P


1

T

T

t=1

utu
′
t


2


1√
T

P

2

Λ−1
K


2
> ε



= P


1

T

T

t=1

utu
′
t


2

Λ−1
K


2
> ε


≤ P

Λ−1
K


2
> ε1


+ P


1

T

T

t=1

utu
′
t


2

> ε2


.

We proceed by bounding the two terms on the r.h.s. of the last inequality. First we note

that Proposition A.1 implies that, for all T sufficiently large

P
Λ−1

K


2
>

2

cKpα


= 1− P


1

λK

≤ 2

cKpα


= O


1

T η


. (31)

Second, we note that


1

T

T

t=1

utu
′
t


2

≤


1

T

T

t=1

utu
′
t − E(utu

′
t)


2

+ E(utu
′
t)2 =


1

T

T

t=1

utu
′
t − E (utu

′
t)


2

+ cK+1 .
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Proposition A.2 then implies that, for all T sufficiently large, we have

P





1

T

T

t=1

utu
′
t


2

> C



(p+ log(T ))
rα+1
rα

T
+


(p+ log(T ))

rα+1
rα

T



+ cK+1



 = O


1

T η


.

(32)

The claim of the proposition then follows from inequalities (31) and (32) after noting that

C



(p+ log(T ))
rα+1
rα

T
+


(p+ log(T ))

rα+1
rα

T



+ cK+1 ≤ C ′


(p+ log(T ))

rα+1
rα

T
+ cK+1


.

Proposition A.6. Suppose A.1–A.4 are satisfied.

Then for any η > 0 there exist a positive constant C such that, for any T sufficiently

large,

HH ′ − IK2 ≤ C


K

T
+


log(T )

T
+

(p+ log(T ))
rα+1
rα

pαT
+

1

pα


,

holds with probability at least 1− T−η.

Proof. By repeated application of the triangle inequality we get

HH ′ − IK2 ≤
HH ′ − 1

T
HP ′PH ′


2

+


1

T
HP ′PH ′ − IK


2

≤ H22
IK − 1

T
P ′P


2

+


1

T
HP ′PH ′ − 1

T
P ′PH ′ +

1

T
P ′PH ′ − 1

T
P ′ P


2

≤ H22


1

T

T

t=1

PtP
′
t − IK


2

+
1

T

(PH ′ − P )′PH ′

2
+

1

T

 P ′(PH ′ − P )

2

≤ H22


1

T

T

t=1

PtP
′
t − IK


2

+
1√
T

 P − PH ′

2


1√
T
P 2H2 +

1√
T
 P 2


.

For any ε > 0, ε1 > 0, ε2 > 0, ε3 > 0 and ε4 > 0 such that ε = ε1ε2 + ε3ε4 it holds that

P (HH ′ − IK2 ≥ ε) ≤ P

H22 ≥ ε1


+ P


1

T

T

t=1

PtP
′
t − IK


2

≥ ε2



+ P


1

T

 P − PH ′

2
≥ ε3


+ P


1√
T
P 2 H2 +

1√
T
 P 2 > ε4


. (33)
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The claim then follows from Proposition A.7, Propositions A.3 and Proposition A.5 by

setting ε1 = 2c1/cK , ε2 = C1(


K/T+


log T/T ), ε3 = C2[(p+ log(T ))
rα+1
rα /(pαT )+1/pα]

and ε4 = 2


c1/cK+1. The same propositions imply that the r.h.s. of (33) can be bounded

by O(T−η).

Proposition A.7. Suppose A.1–A.4 are satisfied. Then for any η > 0, for any T

sufficiently large, it holds that (i) P(


1/TP 2 ≥
√
2) = O(T−η), (ii) P(H2 ≥


2c1/cK) = O(T−η), (iii) P(H−12 ≥ 2


c1/cK) = O(T−η), (iv) P(


1/TY 2 >


η log(T )/Cm) = O(T−η).

Proof. (i) By the triangle inequality, the fact that E (PtP
′
t ) = IK and Proposition A.3 we

have that for any η > 0 there exists a positive constant C such that, for all T sufficiently

large,




1

T
P



2

2

≤

1

T
P ′P − IK


2

+ IK2 ≤ C


K

T
+


log T

T


+ 1 ≤ 2

holds with probability at least 1−O(T−η).

(ii) We begin by noting that

H2 = Λ−1/2
K

V ′
KVKΛ

1/2
K 2 ≤ Λ−1/2

K 2 VK2VK2Λ1/2
K 2 =

√
c1pαΛ−1/2

K 2 ,

where we have used the fact that A.3 implies Λ1/2
K 2 =

√
c1pα. Now we may write

P

H2 ≥


2
c1
cK


≤ P

√
c1pαΛ−1/2

K 2 ≥


2
c1
cK


= P


c1p

α 1

λK

≥ 2
c1
cK



= 1− P

λK ≥ cK

pα

2


≤ O


1

T η


,

where the last inequality is implied by Proposition A.1.
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(iii) We begin by noting that

H−12 = H ′(H ′)−1H−12 ≤ H2(H ′)−1H−12 = H2IK + (H ′)−1H−1 − IK2

≤ H2 + H2(H ′)−1H−1 − IK2 ≤ H2 + H2
HH ′ − IK2

1− HH ′ − IK2
,

where we have used the inequality

A−1 −B−12 ≤
A−122B −A2

1− A−12B −A2
,

where A and B are invertible n × n matrices. The claim then follows from Proposition

A.6 and part (ii) of this proposition.

(iv) By A.1, for any ε > 0, P


1/TY 2 > ε

≤ P (maxt≤T |Yt| > ε) ≤ TP (|Yt| > ε) ≤

T exp (−Cmε
2). Thus, by choosing ε =


η log(T )/Cm we have that


1/TY 2 >


(1 + η) log(T )/Cm holds at most with probability O(T−η).

A.3 Proof of Proposition 3

Proof of Proposition 3. Define the empirical risk differential for an arbitrary ϑ ∈ RK as

Lϑ = RT (ϑ)−RT (ϑ
∗) =

1

T

T

t=1

(P ′
tϑ− P ′

tϑ
∗)2 +

2

T

T

t=1

(Yt − P ′
tϑ

∗)(P ′
tϑ− P ′

tϑ
∗) .

Assume that it holds that

P ′
tϑ− P ′

tϑ
∗L2 >

72C
1
2

σ2

κ2
1κ2


K log(T )

T
. (34)
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Condition on the events of Proposition A.8 and Proposition A.9, for any η > 0, for any

T sufficiently large, with probability at least 1−O(T−η), we have that

1

T

T

t=1

(P ′
tϑ− P ′

tϑ
∗)2

(a)

≥ κ2
1κ2

2
P ′

tϑ− P ′
tϑ

∗2L2

(b)
> 36C

1
2

σ2P ′
tϑ− P ′

tϑ
∗L2


K log(T )

T

(c)

≥


2

T

T

t=1

(Yt − P ′
tϑ

∗)(P ′
tϑ− P ′

tϑ
∗)

 ,

where (a) follows from Proposition A.8, (b) follows from condition (34), and (c) follows

from Proposition A.9. Thus, conditional on the events of Proposition A.8 and Proposition

A.9 and assuming (34) holds we have high probability that Lϑ > 0. Since the empirical

risk minimizer ϑ̂ satisfies Lϑ̂ ≤ 0 then conditional on the same events we have P ′
t ϑ̂ −

P ′
tϑ

∗L2 ≤
72C

1
2
σ2

κ2
1κ2


K log(T )

T
. The claim then follows after noting that

ϑ− ϑ∗2 = P ′
t ϑ̃− P ′

tϑ
∗2L2

≤ Cσ2


72

κ4
1κ

2
2

2
K log(T )

T
. (35)

It is important to emphasize that the L2 norm in (35) is the L2 norm conditional on

{ϑ̃ = ϑ̃(D)}.

Proposition A.8. Suppose A.1–A.5 are satisfied.

Then for any η > 0, for all T sufficiently large and any ϑ ∈ RK,

1

T

T

t=1

(P ′
tϑ

∗ − P ′
tϑ)

2 ≥ κ2
1κ2

2
P ′

tϑ
∗ − P ′

tϑ2L2
,

holds with probability at least 1− T−η.

Proof of Proposition A.8. This follows from Brownlees and Guðmundsson (2025, Proposi-

tion 1 and Theorem 2). Note that the proposition there establishes an analogous claim for

η = 1, but inspection of the proof shows that it is straightforward to allow for any η > 0.

Note that those results require that rK < rα/(rα+1), which is implied by A.4. Also, note

that A.5 implies that the small-ball condition is also satisfied by P ′
tϑ

∗ − P ′
tϑ.

Proposition A.9. Suppose A.1–A.3 are satisfied. Then for any η > 0 and any ϑ ∈ RK,
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there exists a positive constant C such that, for all T sufficiently large


1

T

T

t=1

(Yt − P ′
tϑ

∗)(P ′
tϑ

∗ − P ′
tϑ)

 ≤ CP ′
tϑ

∗ − P ′
tϑL2


K log(T )

T
,

holds with probability at least 1− T−η.

Proof of Proposition A.9. We begin by noting that for any ϑ ∈ RK \ ϑ∗ we have that



T

t=1

(Yt − P ′
tϑ

∗)(P ′
tϑ

∗ − P ′
tϑ)

TP ′
tϑ

∗ − P ′
tϑL2

 =


1

T

T

t=1

(Yt − P ′
tϑ

∗)P ′
tν



=


1

T

T

t=1

[(Yt − P ′
tϑ

∗)P ′
t ]ν

 =


1

T

T

t=1

W ′
tν

 ,

where Wt = (W1 t, . . . ,WK t)
′ with Wi t = (Yt − P ′

tϑ
∗)Pit and ν = (ϑ∗ − ϑ)/P ′

tϑ
∗ −

P ′
tϑL2 . Note that ν2 = 1. Then, for any ϑ ∈ RK \ ϑ∗ it holds

P






T

t=1(Yt − P ′
tϑ

∗)(P ′
tϑ

∗ − P ′
tϑ)


TP ′

tϑ
∗ − P ′

tϑL2

> ε



 ≤ P



 sup
ϑ∈RK\ϑ∗


T

t=1(Yt − P ′
tϑ

∗)(P ′
tϑ

∗ − P ′
tϑ)


TP ′

tϑ
∗ − P ′

tϑL2

> ε





= P


sup

ν:ν2=1


1

T

T

t=1

W ′
tν

 > ε


≤ P


1

T

T

t=1

Wt


2

> ε


.

A.1 and Lemma B.1 imply that Wt is sub-exponential for some parameter C ′
m > 0 for

each i. Standard properties of strong mixing processes imply that {Wt} inherits the

mixing properties of {(Yt,X
′
t)

′} spelled in A.2. Assuming that A.4 is satisfied we have

that Lemma B.2 holds which implies that, for any η > 0 there exists a positive constant

C such that, for all T sufficiently large,

sup
ϑ∈RK\ϑ∗


T

t=1(Yt − P ′
tϑ

∗)(P ′
tϑ− P ′

tϑ
∗)


TP ′
tϑ− P ′

tϑ
∗L2

≤ C


K log(T )

T

holds with probability at least 1−O(T−η). This implies the claim.
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A.4 Proof of Proposition 4

Proof of Proposition 4. The claim follows from the fact that u′
tγ

∗2L2
= (γ∗)′VRΛRV

′
Rγ

∗ =

(θ∗)′VRΛRV
′
Rθ

∗ from Lemma 1.

B Auxiliary Results

Lemma B.1. Suppose A.1 and A.3 are satisfied.

Then we have that (i) there exists some constant C1 > 0 such that Pt is a sub-Gaussian

vector with parameter C1; (ii) if cK+1 > 0 then there exists some constant C2 > 0 such

that ut is sub-Gaussian vector with parameter C2 otherwise ut is degenerate at zero.

Proof. (i) Since Pt = Λ
−1/2
K V ′

KXt = V ′
KZt, we have that for any ε > 0

P


sup

v:v2=1

|v′Pt| > ε


≤ P


sup

v:v2=1

|v′Zt| > ε


≤ exp


−Cmε

2

.

Then, we have that Pt is a sub-Gaussian vector with parameter C1 = Cm.

(ii) We assume that cK+1 > 0. Since ut = VRV
′
RXt = VRΛ

1/2
R V ′

RZt, we have that for any

ε > 0

P


sup

v:v2=1

|v′ut| > ε


≤ P


sup

v:v2=1

c
1/2
K+1|v′Zt| > ε


≤ exp


− Cm

cK+1

ε2


,

where we have used the fact that VRΛ
1/2
R V ′

R2 ≤ VR2Λ1/2
R 2V ′

R2 = c
1/2
K+1. Then we

have that that ut is a sub-Gaussian vector with parameter C2 = Cm/cK+1.

Lemma B.2. Let {Zt}Tt=1 be a stationary sequence of d-dimensional zero-mean random

vectors. Suppose (i) for any ε > 0 it holds sup1≤i≤d P(|Zi t| > ε) ≤ exp(−Cmε) for some

Cm > 0; (ii) the α-mixing coefficients of the sequence satisfy α(l) < exp(−Cαl
rα) for some

Cα > 0 and rα > 0; and (iii) d = ⌊CdT
rd⌋ for some Cd > 0 and rd ∈ [0, 1].

Then for any η > 0 there exists a positive constant Cη such that, for any T sufficiently
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large, it holds that

P


1

T

T

t=1

Zt


2

> Cη


d log(T )

T


≤ 1

T η
.

Proof. Let C∗ denote a positive constant to be chosen below. Note that

P


1

T

T

t=1

Zt


2

≥ C∗


d log(T )

T


≤ d max

1≤i≤d
P



T

t=1

Zi t

 ≥ C∗


T log(T )


.

Let
T

t=1 Zi t =
T

t=1 Z
′
i t +

T
t=1 Z

′′
i t where Z ′

i t = Zi t (|Zi t| ≤ bT )− E (Zi t (|Zi t| ≤ bT ))

and Z ′′
i t = Zi t (|Zi t| > bT )− E (Zi t (|Zi t| > bT )). Then we have

P



T

t=1

Zi t

 > C∗


T log(T )


≤ P



T

t=1

Z ′
i t

 >
C∗

2


T log(T )


+ P



T

t=1

Z ′′
i t

 >
C∗

2


T log(T )


.

The sequence {Z ′
i t}Tt=1 has the same mixing properties as {Zt}Tt=1 and sup1≤i≤d Z ′

i t∞ <

2bT . Define εT = (C∗/2)


T log(T ), bT = 2(rd + 1/2 + η)C−1
m log(T ) and MT = ⌊b−1

T


T/ log(T )⌋.

For any T sufficiently large MT ∈ [1, T ] and 4(2bT )MT < εT , implying that the conditions

of Theorem 2.1 of Liebscher (1996) are satisfied. Then we have

P



T

t=1

Z ′
i t

 > εT


< 4 exp


− ε2T
64 T

MT
D(T,MT ) +

16
3
bTMT εT


+ 4

T

MT

exp (−CαM
rα
T ) ,

with D(T,MT ) = sup1≤i≤d E
MT

t=1 Z
′
i t

2

. Define γ(l) = sup1≤i≤d |Cov(Z ′

i t, Z
′
i t+l)|

for l = 0, 1, . . . and note that D(T,MT ) ≤ MT

MT−1
l=−MT+1 γ(l). For l = 0, . . . it holds

that γ(l) ≤ 12α(l)
1
2 sup1≤i≤d Z ′

i t2L4
≤ 48α(l)

1
2 sup1≤i≤d Zi t2L4

where the first inequality

follows from Davydov’s inequality (Bosq, 1998, Corollary 1.1) and the second one fol-

lows from the fact that Z ′
i tL4 ≤ 2Zi t (|Zi t| ≤ bT )L4 ≤ 2Zi tL4 This implies that

D(T,MT ) < MTCσ2 where Cσ2 = (96Cm,4

∞
l=0 α(l)

1
2 )∨ 1 where Cm,4 = sup1≤i≤d Zi t2L4

.

We then have that

d max
1≤i≤d

P



T

t=1

Z ′
i t

 > εT


≤ 4Cd exp


rd log(T )−

(C∗)2 log(T )

256Cσ2 + 32
3
C∗


+ 4CdT

1+rd exp (−CαM
rα
T )

< 4Cd exp (−η log(T )) + 4Cd exp (2 log(T )− CαM
rα
T ) =

5Cd

T η
, (36)

36



where the second inequality follows from a sufficiently large choice of the constant C∗.

The sequence {Z ′′
i t}Tt=1 is such that

d max
1≤i≤d

P



T

t=1

Z ′′
i t

 > εT


≤ d

εT
max
1≤i≤d

E



T

t=1

Z ′′
i t

 ≤
d

εT

T

t=1

max
1≤i≤d

E|Z ′′
i t|

≤ 2dT

εT
max
1≤i≤d

E |Zi t (|Zi t| > bT )| ≤
2dT

εT
max
1≤i≤d

Zi tL2 (|Zi t| > bT )L2

=
2dT

εT
max
1≤i≤d

Zi tL2P(|Zi t| > bT )
1
2 <

2dT

εT
σ2 exp


−Cm

2
bT



≤ 4Cdσ
2

C∗
√
log T

exp


rd +

1

2


log(T )− Cm

2
bT


<

1

T η
, (37)

where the first inequality follows from Markov’s inequality and σ2 = sup1≤i≤d Zi tL2 .

Equations (36) and (37) imply the claim.
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