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Introduction

• Principal component regression (PCR) consists in
regressing a prediction target Yt on the first K
principal components extracted from a (large) set
of p predictors Xt .

• In this paper we study PCR from a learning
theory perspective with dependent data.

• We establish an oracle inequality for PCR. That
is, a nonasymptotic prediction performance
guarantee for PCR.

Highlights

• Nonparametric. The relation between the
target and regressors is not specified.

• Strong and Weak Signals. The largest K
eigenvalues of the covariance matrix of
predictors Xt diverge at the rate pα where
• α = 1 (strong signal case) or
• α = (1/2, 1) (weak signal case).

• Focus on Predictive Performance. We
study the gap between the predictive
performance of PCR and the best linear
predictor.

Principal Component Regression

• {(Yt, Xt)′}T
t=1: Stationary sequence of dependent

random vectors taking values in Y × X ⊂ R×Rp

• The relation between Yt and Xt is not specified
• The number of predictors p is non negligible relative to T

• Predicting Yt using Xt: rely on principal
component regression
1 Compute the first K principal components of Xt, P̂t is

given by (s.t. normalization)
P̂t = Λ̂−1/2

K V̂ ′
KXt,

where Λ̂K is the K × K diagonal matrix consists of the largest K eigenvalue of

Σ̂ = X ′X/T and V̂K is the p × K matrix of corresponding eigenvectors

2 Run a regression of Yt on the principal components P̂t to
obtain the K-dimensional coefficients

ϑ̂ = arg min
ϑ∈RK

1
T

T∑
t=1

(Yt − ϑ′P̂t)2

Performance of PCR

• PCR is in fact a procedure of choosing a
prediction rule by minimizing the empirical risk

• Predictive performance of PCR is measured by
the conditional risk:
R(ϑ̂) = E

(Yt − ϑ̂′P̂t)2
∣∣∣∣∣∣∣∣ D

 , D:data used for estimation
• The natural benchmark is the risk of the best

linear predictor
R(θ∗) = min

θ∈Rp
R(θ), where R(θ) = E

(Yt − X ′
tθ)2 .

• Oracle inequality:
R(ϑ̂) − R(θ∗) ≤ BT (K, p)

holds at least with probability 1 − δT (p, K) for all
sufficiently large T , where BT (p, K) and δT (p, K)
approach 0 as T → ∞.
• We care about prediction accuracy, not about estimation

accuracy.
• We care about achieving optimality relative to the class of

forecasting rules (here linear forecasts), not relative to the
“true model”

• We care about finite sample guarantees, not about
asymptotic ones.

Optimal Learning Rate

Key question

We care about the rate of convergence BT (p, K).
What is the optimal learning rate BT (p, K) that
can be achieved?

• This in general can be a tough question to
answer. In this paper we shed partial light onto
this question by comparing the learning rates
obtained in this work with the optimal learning
rate that could be achieved if the principal
components were observed.

• It is well known that in such a case the optimal
rate of convergence for linear aggregation is of the
order K/T , which is achieved by the least squares
estimator [Tsybakov 2003]

• Challenge: The principal components are not not
observed and have to be estimated from the data

Main Result

Theorem: Performance of Empirical Risk Minimization

Suppose that all assumptions are satisfied. Then for any η > 0 there exists a constant C > 0 such that,
for any T sufficiently large,

R(ϑ̂) − R(θ∗) ≤ 2(θ∗)′VRΛRV ′
Rθ∗ + C


1

p2α−1 +


p

Tpα



2
p

2
rα + K

T


log(T ),

holds with probability at least 1−T −η, where VR and ΛR are the matrices of eigenvectors and eigenvalues corresponding
to the K + 1 to p eigenvalues of Σ.

• The bound is made up of two terms. The first can interpreted as the approximation error of PCR and the
second as the estimation error.

• For ease of exposition we assume that the approximation error is at most of the same order of magnitude
of the estimation error:
• The optimal rate can be achieved (up to a logarithmic factor) in the both the strong signal (α = 1), and the weak signal

(α < 1) cases, provided that α > 2/3.
• The larger the values of α, rα and rK, the larger the range of admissible growth rates for the number of predictors rp.

Proof Strategy

The proof is based on a decomposition (we have
omitted the rotation matrix of the principal com-
ponents):
R(ϑ̂) − R(θ∗) = ∥Yt − P̂ ′

t ϑ̂∥2
L2

− ∥Yt − P ′
t ϑ̂∥2

L2

+ ∥Yt − P ′
t ϑ̂∥2

L2
− ∥Yt − P ′

t ϑ̃∥2
L2

+ ∥Yt − P ′
t ϑ̃∥2

L2
− ∥Yt − P ′

tϑ
∗∥2

L2

+ ∥Yt − P ′
tϑ

∗∥2
L2

− ∥Yt − X ′
tθ

∗∥2
L2

= AT + BT + CT + DT ,

where
ϑ̃ = arg min

ϑ∈RK

1
T

T∑
t=1

(Yt − P ′
tϑ)2,

ϑ∗ = arg min
ϑ∈RK

E[(Yt − P ′
tϑ)2]

θ∗ = arg min
θ∈Rp

E[(Yt − X ′
tθ

∗)2] .

Notation: For a generic random variable X , ∥X∥L2 is defined as[E|X|2]1
2

• AT and BT capture the risk of PCR that is due
to the estimation of the principal components.

• CT captures the risk of the least squares
estimator of PCR based on the population
principal components and it achieves the optimal
rate K/T (We rely on a proof strategy based on
the so-called small-ball method [Mendelson 2015, Lecué and

Mendelson 2016] ).
• DT is a constant representing (squared) bias or

approximation error.

Conclusion

• We establish prediction performance guarantees
for empirical risk minimization for principal
component regression.

• Analysis is carried out in a nonparametric
framework. In particular the target variable Yt is
not assumed to be generated by a factor model.

• Under appropriate conditions, PCR achieves
optimal performance (up to a logarithmic factor)
in both the strong signal and weak signal regimes.
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