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Introduction

Warm-Up: Statistical Learning Theory

Learning theory is the theoretical backbone of machine learning.

A key principle of learning theory is empirical risk minimization.

Let Yt be a random variable and fθ t a class of forecasting rules
indexed by θ. Empirical risk minimization consists in choosing the
forecasting rule fθ t that minimizes the empirical loss for predicting Yt .

Key feature of learning theory is its nonparametric nature:
The relation between Yt and fθ t is not specified.

Objective of learning theory is to establish nonasymptotic bounds on
the predictive performance of empirical risk minimization.
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Introduction

Statistical Learning Theory for Time Series

The bulk of contributions in learning theory focus on setups that are
arguably not attractive for economics: i.i.d. and bounded data.

This paper deals with principal component regression (PCR) and our
main contribution consists in establishing nonasymptotic prediction
performance guarantees for this regression technique.
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Introduction

Key Features of the Analysis

Focus on Predictive Performance.
We study the gap between PCR and the best linear predictor given by

EpYt ´ f̂ PCRt q2 ´ min
θ

EpYt ´ X 1
tθq2 .

Nonparametric.
The relation between the target Yt and predictors Xt is not specified.
We treat PCR as a regularized regression technique.

Strong and Weak Signals.
The largest K eigenvalues of the covariance matrix of predictors Xt

diverge at the rate pα where
α “ 1 (strong signal case) or
α P p1{2, 1q (weak signal case).
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Introduction

Related Literature
Principal component regression (PCR) can be traced back to at least
[Hotelling, 1957] and [Kendall, 1957].

Humongous list of contributions in econometrics on factor
models/principal component regression:
[Bai and Ng, 2002], [Bai, 2003], [Forni et al., 2000], [Forni et al., 2005], [Fan et al., 2011],

[Fan et al., 2013], [Onatski, 2012], [Gagliardini et al., 2020], [Giglio et al., 2023] among others.

We rely on arguments by Bai, Fan, Liao, Mincheva and Ng.

[Stock and Watson, 2002] and [Fan et al., 2024] study the prediction
properties of PCR. [Fan et al., 2024] is an influential recent key
contribution that studies the properties of a large class of
high-dimensional models that includes factor models.
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Basic Framework

Let tpYt ,Xtq1uTt“1 be a stationary sequence of zero-mean random
vectors taking values in Y ˆ X Ă R ˆ Rp

We are interested in predicting Yt using Xt when p is large.

We rely on principal component regression (PCR) for prediction.
1 We compute the first K principal components of Xt (denoted by pPt)
2 We run a regression of Yt on the principal components pPt .
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Basic Framework

Principal Component Regression: Step 1
The first step consists in computing the T ˆ K principal components
matrix pP “ p pP1, . . . , pPT q1 associated with the T ˆ p predictor matrix
X “ pX1, . . . ,XT q1.

This may be defined as the solution of the problem

p pB, pPq “ arg min
BPRpˆK

PPRTˆK

}X´PB 1}2
F s.t.

1
T

P 1P “ IK ,
1
p
B 1B is diagonal ,

As it is well known the solution of this problem is given by

pP “ X pVK
pΛ

´1{2
K

where pΛK and pVK are, respectively, the matrices of the top K
eigenvalues and eigenvectors of pΣ “ X 1X {T .
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Basic Framework

Principal Component Regression: Step 2

The regression coefficient for predicting Yt given pPt is given by

ϑ̂ “ arg min
ϑPRK

}Y ´ pPϑ}2
2 ,

where Y “ pY1, . . . ,YT q1 .

As it is well known the solution of this problem is given by

ϑ̂ “ p pP 1
pPq´1

pP 1Y “
1
T

pP 1Y .
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Basic Framework

PCR as Regularized ERM
It may not be apparent at first that PCR is an empirical risk
minimization procedure, but this is in fact the case.

Let the regularized empirical risk minimizer θ̂PCR P Rp be given by

θ̂PCR “ arg min
θPRp

}Y ´ X 1θ}2
2 s.t. pV 1

Rθ “ 0 ,

where pVR is the p ˆ p ´ K matrix of eigenvectors corresponding to
the K ` 1 to p eigenvalues of pΣ.

It is straightforward to establish that

θ̂PCR “ pΛ
´1{2
K

pVK ϑ̂ ,

and that θ̂PCR and ϑ̂ produce same forecast

f̂ PCRt “ θ̂1
PCRXt “ ϑ̂1

pPt .
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Performance Measure and Benchmark
We are concerned with establishing an oracle inequality for PCR

We measure the accuracy of PCR by its conditional risk

Rpθ̂PCRq “ E
”

pYt ´ f̂ PCRt q2
ˇ

ˇ

ˇ
θ̂PCR “ θ̂PCRpDq

ı

,

where the observation pYt ,Xtq1 is drawn independently of the data D.
This can be interpreted as the risk of the ERM obtained from the
“training data” D over the “validation observation” pYt ,Xtq1.

The natural benchmark is the risk of the best linear predictor

Rpθ˚q “ min
θPRp

Rpθq, where Rpθq “ E
“

pYt ´ X 1
tθq2‰

.
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Oracle Inequality

Our objective is to establish an oracle inequality stating that

Rpθ̂PCRq ď Rpθ˚q ` BT pp,K q

holds at least with probability 1 ´ δT pp,K q for all sufficiently large T ,
where BT pp,K q and δT pp,K q approach 0 as T Ñ 8.

A few “philosophical” remarks to appreciate what this means:
We care about prediction accuracy, not about estimation accuracy.

We care about achieving optimality relative to the class of forecasting
rules (here linear forecasts), not relative to the “true model”

We care about finite sample guarantees, not about asymptotic ones.

We care about the rate of convergence BT pp,K q.
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Optimal Learning Rate

Key question:
What is the optimal learning rate BT pp,K q that can be achieved?

This in general can be a tough question to answer. In this paper we
shed partial light onto this question by comparing the learning rates
obtained in this work with the optimal learning rate that could be
achieved if the principal components were observed.

It is well known that in such a case the optimal rate of convergence
for linear aggregation is of the order K{T , which is achieved by the
least squares estimator [Tsybakov, 2003].
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Assumptions

The assumptions of our analysis are a union of
Assumptions analogous to those used in [Fan et al., 2013] for the
analysis of (regularized) covariance estimation when the data is
generated by an approximate factor model.
We work with a weaker version of some of their assumptions.

The small-ball assumption used in [Lecué and Mendelson, 2016]. This
assumption allows to use a proof strategy that leads to sharp rates.

A mild regularity condition on the predictors’ distribution. Analog of a
large dimensional version of the bounded density assumption often
used in the analysis of nonparametric estimators.
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Assumptions

1 Distribution.
Data have subGaussian tails.

2 Dependence.
Data are α-mixing with geometric decaying α-mixing coefficients with rate of decay rα

3 Eigenvalues.
K largest eigenvalues of the covariance matrix diverge at the rate pα for α P p1{2, 1s.

4 Number of predictors and principal components.
Number of predictors and principal components grow as a function of the sample size T .

5 Small-ball condition.
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A.3 Eigenvalues

A.3 Eigenvalues

There is an integer K P t1, . . . , pu, a constant α P p1{2, 1s and a sequence
of non-increasing nonnegative constants c1, . . . , cp with cK ą 0 such that,
λi “ cip

α for i “ 1, . . . ,K , and λi “ ci for i “ K ` 1, . . . , p.

In our analysis we distinguish between
1 strong signal regime when α “ 1 (analog of strong factor models)
2 weak signal regime when α P p1{2, 1q (analog of weak factor models).

Note that we allow the non-diverging eigenvalues of Σ to be zero.
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A.5 Small-ball Condition

A.5 Small-ball Condition
The sequence tXtuTt“1 satisfies, for each t “ 1, . . . ,T and for each
θ1,θ2 P Rp,

P p|fθ1 t ´ fθ2 t | ě κ1}fθ1 t ´ fθ2 t}L2q ě κ2 ,

for some κ1 ą 0 and κ2 ą 0.

This is an identification condition. It requires the random variable
pθ1 ´ θ2q1X not to have excessive mass in a neighbourhood of zero.
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Main Result
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Empirical Risk Minimization for PCR

Theorem 1 Empirical Risk Minimization for PCR
Suppose A1-A5 are satisfied.
Then for any η ą 0 there exists a constant C ą 0 such that, for any T sufficiently large,

Rpθ̂PCRq ď Rpθ˚q ` 2pθ˚q1VRΛRV 1
Rθ

˚ ` C

«

1
p2α´1 `

ˆ

p

Tpα

˙2
p

2
rα `

K

T

ff

logpT q,

holds with probability at least 1 ´ T´η .

This is an oracle inequality since BT pp,K q Ñ 0 as T Ñ 8.

BT pp,K q depends on the rate of growth of p and K and signal strength α.
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Remarks on Theorem 1

The gap is made up of two terms. The first can interpreted as the
approximation error of PCR and the second as the estimation error.

The approximation error measures the gap between the performance
of the best linear predictor based on the population principal
components Pt and the best linear predictor based on the predictors
Xt .

The estimation error measures the gap between the performance of
PCR relative to the best linear predictor based on the population
principal components Pt .

If the contribution of the idiosyncratic component vector ut is
negligible then PCR has a negligible approximation error.
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More on the learning rate BT pp,K q – Strong Signal

For ease of exposition we assume that the approximation error is zero
throughout this section.

For two sequences tAT u and tBT u we use AT À BT to denote that
there is a constant C ą 0 such that PpAT ă CBT q Ñ 1 as T Ñ 8.

In the strong signal case (α “ 1) and independence prα “ 8q

Rpϑ̂q ´ Rpθ˚q À

„

1
p

`
1
T 2 `

K

T

ȷ

logpT q .

If p ą T then we recover the optimal learning rate K{T .
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More on the learning rate BT pp,K q – Weak Signal

In the weak signal case (α P p1{2, 1q) and independence prα “ 8q

Rpϑ̂q ´ Rpθ˚q À

«

1
p2α´1 `

ˆ

p

Tpα

˙2

`
K

T

ff

logpT q .

Learning is slow when factors are weak.
Example: when α “ 0.55 and p “ 101000 we have that 1

p2α´1 « 0.4.

When rp P r1{p2α ´ 1q, 1{p2 ´ 2αqs, Rpϑ̂q ´ Rpθ˚q À K
T
logpT q

Recovery of the optimal learning rate is only possible when α ą 2{3.
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Proof of Theorem 1

Sketch of Proof

We conclude with a sketch of the proof of Theorem 1.

This is a combination of arguments used to establish consistency in
the factor model literature and an elegant argument based on
[Lecué and Mendelson, 2016].
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Proof of Theorem 1

Sketch of Proof

Define
the approximate rotation matrix H “ pΛ

´1{2
K

pV 1
KVKΛ

1{2
K

the vector of coefficients of the optimal linear predictor based on the
population principal components Pt

ϑ˚ “ arg min
ϑPRK

}Yt ´ P 1
tϑ}2

L2
,

the empirical risk minimizer based on the population principal
components Pt

ϑ̃ “ arg min
ϑPRK

}Y ´ Pϑ}2
2 .
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Basic Decomposition

Basic Decomposition

Let tZtu with Zt “ pYt ,X 1
tq

1 be a zero-mean pp ` 1q-dimensional
stationary process with EpZ 2

i tq ă 8 for all i .
Then it holds that

Rpθ̂PCRq ´ Rpθ˚q ď 2 max
1ďsďT

tY 2
s uEp} pPt ´ HPt}

2
2|Dq

` 4}ϑ̃ ´ H 1ϑ̂}2
2 ` 4}ϑ˚ ´ ϑ̃}2

2 ` 2}u1
tγ

˚}2
L2

,
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Proof of Theorem 1

Basic Decomposition

Ep} pPt ´ HPt}2
2|Dq and }ϑ̃ ´ H 1ϑ̂}2

2 are controlled using arguments
analog to the ones used in the factor model literature, in particular
[Fan et al., 2013].

}ϑ˚ ´ ϑ̃}2
2 is controlled using the small-ball method of

[Lecué and Mendelson, 2016]

}u1
tγ

˚}2
L2

is the approximation error of PCR. However under A.6 this is
at most of the same order of magnitude of the estimation error.
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Conclusions

Conclusion

We establish prediction performance guarantees for empirical risk
minimization for principal component regression.

We establish oracle inequalities under strong and weak signal regimes.

Analysis is carried out in a nonparametric framework. In particular the
target variable Yt is not assumed to be generated by a factor model.
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